functionally complete algebra - définition. Qu'est-ce que functionally complete algebra
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est functionally complete algebra - définition

CONCEPT FROM MATHEMATICS
Completeness (Boolean algebra); Complete boolean algebra; Complete Boolean lattice

Functional completeness         
PROPERTY OF A SET OF LOGICAL CONNECTIVES WHICH CAN EXPRESS ALL POSSIBLE TRUTH TABLES BY COMBINING MEMBERS OF THE SET
Complete set of Boolean operators; Sole sufficient operator; Adequacy (logic); Post's functional completeness theorem; Functionally complete; Sufficiently connected; Expressive adequacy; Post's criterion
In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression.. ("Complete set of logical connectives")..
Complete Boolean algebra         
In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.

Wikipédia

Complete Boolean algebra

In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.

More generally, if κ is a cardinal then a Boolean algebra is called κ-complete if every subset of cardinality less than κ has a supremum.